Health Tips : Local Effects Of Cancer - Fountain Prime Schools

Motto: Dedication & Sound Knowledge

https://www.canva.com/design/DAF4gu0Ww2Y/ZgqoLtlMGzstE5Te4_Tibw/edit?utm_content=DAF4gu0Ww2Y&utm_campaign=designshare&utm_medium=link2&utm_source=sharebutton

Breaking

Friday, 13 October 2017

Health Tips : Local Effects Of Cancer

Cancers are a large family of diseases that involve abnormal cell growth with the potential to invade or spread to other parts of the body. They form a subset of neoplasms. A neoplasm or tumor is a group of cells that have undergone unregulated growth, and will often form a mass or lump, but may be distributed diffusely.
Six characteristics of cancer have been proposed:
•    self-sufficiency in growth signalling
•    insensitivity to anti-growth signals
•    evasion of apoptosis
•    enabling of a limitless replicative potential
•    induction and sustainment of angiogenesis
•    activation of metastasis and invasion of tissue.
The progression from normal cells to cells that can form a discernible mass to outright cancer involves multiple steps known as malignant progression.
Signs and symptoms

Symptoms of cancer metastasis depend on the location of the tumor.
When cancer begins, it invariably produces no symptoms. Signs and symptoms only appear as the mass continues to grow or ulcerates. The findings that result depend on the type and location of the cancer. Few symptoms are specific, with many of them also frequently occurring in individuals who have other conditions. Cancer is the new "great imitator". Thus, it is not uncommon for people diagnosed with cancer to have been treated for other diseases, which were assumed to be causing their symptoms.
Local effects
Local symptoms may occur due to the mass of the tumor or its ulceration. For example, mass effects from lung cancer can cause blockage of the bronchus resulting in cough or pneumonia; esophageal cancer can cause narrowing of the esophagus, making it difficult or painful to swallow; and colorectal cancer may lead to narrowing or blockages in the bowel, resulting in changes in bowel habits. Masses in breasts or testicles may be easily felt. Ulceration can cause bleeding that, if it occurs in the lung, will lead to coughing up blood, in the bowels to anemia or rectal bleeding, in the bladder to blood in the urine, and in the uterus to vaginal bleeding. Although localized pain may occur in advanced cancer, the initial swelling is usually painless. Some cancers can cause a buildup of fluid within the chest or abdomen.
Systemic symptoms
General symptoms occur due to distant effects of the cancer that are not related to direct or metastatic spread. These may include: unintentional weight loss, fever, being excessively tired, and changes to the skin. Hodgkin disease, leukemias, and cancers of the liver or kidney can cause a persistent fever of unknown origin.
Some cancers may cause specific groups of systemic symptoms, termed paraneoplastic phenomena. Examples include the appearance of myasthenia gravis in thymoma and clubbing in lung cancer.
Metastasis
Cancer can spread from its original site by local spread, lymphatic spread to regional lymph nodes or by blood (haematogenous spread) to distant sites, known as metastasis. When cancer spreads by a haematogenous route, it usually spreads all over the body. However, cancer 'seeds' grow in certain selected site only ('soil') as hypothesized in the soil and seed hypothesis of cancer metastasis. The symptoms of metastatic cancers depend on the location of the tumor, and can include enlarged lymph nodes (which can be felt or sometimes seen under the skin and are typically hard), enlarged liver or enlarged spleen, which can be felt in the abdomen, pain or fracture of affected bones, and neurological symptoms.
Causes
The great majority of cancers, some 90–95% of cases, are due to environmental factors. The remaining 5–10% are due to inherited genetics. Environmental, as used by cancer researchers, means any cause that is not inherited genetically, such as lifestyle, economic and behavioral factors, and not merely pollution.[26] Common environmental factors that contribute to cancer death include tobacco (25–30%), diet and obesity (30–35%), infections (15–20%), radiation (both ionizing and non-ionizing, up to 10%), stress, lack of physical activity, and environmental pollutants.
It is nearly impossible to prove what caused a cancer in any individual, because most cancers have multiple possible causes. For example, if a person who uses tobacco heavily develops lung cancer, then it was probably caused by the tobacco use, but since everyone has a small chance of developing lung cancer as a result of air pollution or radiation, then there is a small chance that the cancer developed because of air pollution or radiation. Excepting the rare transmissions that occur with pregnancies and only a marginal few organ donors, cancer is generally not a transmissible disease.
Chemicals
Further information: Alcohol and cancer and Smoking and cancer

The incidence of lung cancer is highly correlated with smoking.
Exposure to particular substances have been linked to specific types of cancer. These substances are called carcinogens. Tobacco smoking, for example, causes 90% of lung cancer. It also causes cancer in the larynx, head, neck, stomach, bladder, kidney, esophagus and pancreas.  Tobacco smoke contains over fifty known carcinogens, including nitrosamines and polycyclic aromatic hydrocarbons.  Tobacco is responsible for about one in three of all cancer deaths in the developed world, and about one in five worldwide. Lung cancer death rates in the United States have mirrored smoking patterns, with increases in smoking followed by dramatic increases in lung cancer death rates and, more recently, decreases in smoking rates since the 1950s followed by decreases in lung cancer death rates in men since 1990.

In Western Europe, 10% of cancers in males and 3% of all cancers in females are attributed to alcohol exposure, especially cancer of the liver and of the digestive tract. Cancer related to substance exposures at work is believed to represent between 2–20% of all cases. Every year, at least 200,000 people die worldwide from cancer related to their workplaces. Millions of workers run the risk of developing cancers such as lung cancer and mesothelioma from inhaling tobacco smoke or asbestos fibers on the job, or leukemia from exposure to benzene at their workplaces.
Diet and exercise
Diet, physical inactivity, and obesity are related to up to 30–35% of cancer deaths. In the United States excess body weight is associated with the development of many types of cancer and is a factor in 14–20% of all cancer deaths.  Correspondingly, a UK study including data on over 5 million people showed higher body mass index to be related to at least 10 types of cancer, and responsible for around 12,000 cases each year in that country. Physical inactivity is believed to contribute to cancer risk, not only through its effect on body weight but also through negative effects on the immune system and endocrine system. More than half of the effect from diet is due to overnutrition (eating too much), rather than from eating too few vegetables or other healthful foods.
Some specific foods are linked to specific cancers. A high-salt diet is linked to gastric cancer.[39] Aflatoxin B1, a frequent food contaminate, causes liver cancer. Betel nut chewing causes oral cancer.[39] The differences in dietary practices may partly explain differences in cancer incidence in different countries. For example, gastric cancer is more common in Japan due to its high-salt diet  and colon cancer is more common in the United States. Immigrants develop the risk of their new country, often within one generation, suggesting a substantial link between diet and cancer.
Infection
Worldwide approximately 18% of cancer deaths are related to infectious diseases. This proportion varies in different regions of the world from a high of 25% in Africa to less than 10% in the developed world. Viruses are the usual infectious agents that cause cancer but cancer bacteria and parasites may also have an effect.
A virus that can cause cancer is called an oncovirus. These include human papillomavirus (cervical carcinoma), Epstein–Barr virus (B-cell lymphoproliferative disease and nasopharyngeal carcinoma), Kaposi's sarcoma herpesvirus (Kaposi's sarcoma and primary effusion lymphomas), hepatitis B and hepatitis C viruses (hepatocellular carcinoma), and human T-cell leukemia virus-1 (T-cell leukemias). Bacterial infection may also increase the risk of cancer, as seen in Helicobacter pylori-induced gastric carcinoma. Parasitic infections strongly associated with cancer include Schistosoma haematobium (squamous cell carcinoma of the bladder) and the liver flukes, Opisthorchis viverrini and Clonorchis sinensis (cholangiocarcinoma).
Radiation
Up to 10% of invasive cancers are related to radiation exposure, including both ionizing radiation and non-ionizing ultraviolet radiation. Additionally, the vast majority of non-invasive cancers are non-melanoma skin cancers caused by non-ionizing ultraviolet radiation, mostly from sunlight. Sources of ionizing radiation include medical imaging and radon gas.
Ionizing radiation is not a particularly strong mutagen. Residential exposure to radon gas, for example, has similar cancer risks as passive smoking. Radiation is a more potent source of cancer when it is combined with other cancer-causing agents, such as radon gas exposure plus smoking tobacco. Radiation can cause cancer in most parts of the body, in all animals, and at any age. Children and adolescents are twice as likely to develop radiation-induced leukemia as adults; radiation exposure before birth has ten times the effect.
Medical use of ionizing radiation is a small but growing source of radiation-induced cancers. Ionizing radiation may be used to treat other cancers, but this may, in some cases, induce a second form of cancer. It is also used in some kinds of medical imaging.
Non-ionizing radio frequency radiation from mobile phones, electric power transmission, and other similar sources have been described as a possible carcinogen by the World Health Organization's International Agency for Research on Cancer. However, studies have not found a consistent link between cell phone radiation and cancer risk.
Heredity
 Cancer syndrome
The vast majority of cancers are non-hereditary ("sporadic cancers"). Hereditary cancers are primarily caused by an inherited genetic defect. Less than 0.3% of the population are carriers of a genetic mutation that has a large effect on cancer risk and these cause less than 3–10% of all cancer. Some of these syndromes include: certain inherited mutations in the genes BRCA1 and BRCA2 with a more than 75% risk of breast cancer and ovarian cancer and hereditary nonpolyposis colorectal cancer (HNPCC or Lynch syndrome), which is present in about 3% of people with colorectal cancer, among others.
Physical agents
Some substances cause cancer primarily through their physical, rather than chemical, effects on cells. A prominent example of this is prolonged exposure to asbestos, naturally occurring mineral fibers that are a major cause of mesothelioma, which is a cancer of the serous membrane, usually the serous membrane surrounding the lungs. Other substances in this category, including both naturally occurring and synthetic asbestos-like fibers, such as wollastonite, attapulgite, glass wool, and rock wool, are believed to have similar effects. Non-fibrous particulate materials that cause cancer include powdered metallic cobalt and nickel, and crystalline silica (quartz, cristobalite, and tridymite). Usually, physical carcinogens must get inside the body (such as through inhaling tiny pieces) and require years of exposure to develop cancer.
Physical trauma resulting in cancer is relatively rare. Claims that breaking bones resulted in bone cancer, for example, have never been proven. Similarly, physical trauma is not accepted as a cause for cervical cancer, breast cancer, or brain cancer. One accepted source is frequent, long-term application of hot objects to the body. It is possible that repeated burns on the same part of the body, such as those produced by kanger and kairo heaters (charcoal hand warmers), may produce skin cancer, especially if carcinogenic chemicals are also present. Frequently drinking scalding hot tea may produce esophageal cancer. Generally, it is believed that the cancer arises, or a pre-existing cancer is encouraged, during the process of repairing the trauma, rather than the cancer being caused directly by the trauma. However, repeated injuries to the same tissues might promote excessive cell proliferation, which could then increase the odds of a cancerous mutation.
It is controversial whether chronic inflammation can directly cause mutation. It is recognized, however, that inflammation can contribute to proliferation, survival, angiogenesis and migration of cancer cells by influencing the microenvironment around tumors. Furthermore, oncogenes are known to build up an inflammatory pro-tumorigenic microenvironment.

Hormones
Some hormones play a role in the development of cancer by promoting cell proliferation. Insulin-like growth factors and their binding proteins play a key role in cancer cell proliferation, differentiation and apoptosis, suggesting possible involvement in carcinogenesis.
Hormones are important agents in sex-related cancers, such as cancer of the breast, endometrium, prostate, ovary, and testis, and also of thyroid cancer and bone cancer. For example, the daughters of women who have breast cancer have significantly higher levels of estrogen and progesterone than the daughters of women without breast cancer. These higher hormone levels may explain why these women have higher risk of breast cancer, even in the absence of a breast-cancer gene. Similarly, men of African ancestry have significantly higher levels of testosterone than men of European ancestry, and have a correspondingly much higher level of prostate cancer. Men of Asian ancestry, with the lowest levels of testosterone-activating androstanediol glucuronide, have the lowest levels of prostate cancer.
Other factors are also relevant: obese people have higher levels of some hormones associated with cancer and a higher rate of those cancers. Women who take hormone replacement therapy have a higher risk of developing cancers associated with those hormones. On the other hand, people who exercise far more than average have lower levels of these hormones, and lower risk of cancer. Osteosarcoma may be promoted by growth hormones. Some treatments and prevention approaches leverage this cause by artificially reducing hormone levels, and thus discouraging hormone-sensitive cancers.
Pathophysiology
Carcinogenesis

Cancers are caused by a series of mutations. Each mutation alters the behavior of the cell somewhat.
Genetics
Cancer is fundamentally a disease of tissue growth regulation failure. In order for a normal cell to transform into a cancer cell, the genes that regulate cell growth and differentiation must be altered.
The affected genes are divided into two broad categories. Oncogenes are genes that promote cell growth and reproduction. Tumor suppressor genes are genes that inhibit cell division and survival. Malignant transformation can occur through the formation of novel oncogenes, the inappropriate over-expression of normal oncogenes, or by the under-expression or disabling of tumor suppressor genes. Typically, changes in many genes are required to transform a normal cell into a cancer cell.
Genetic changes can occur at different levels and by different mechanisms. The gain or loss of an entire chromosome can occur through errors in mitosis. More common are mutations, which are changes in the nucleotide sequence of genomic DNA.

Classification
Further information: List of cancer types and List of oncology-related terms
Cancers are classified by the type of cell that the tumor cells resemble and is therefore presumed to be the origin of the tumor. These types include:
•    Carcinoma: Cancers derived from epithelial cells. This group includes many of the most common cancers, particularly in the aged, and include nearly all those developing in the breast, prostate, lung, pancreas, and colon.
•    Sarcoma: Cancers arising from connective tissue (i.e. bone, cartilage, fat, nerve), each of which develops from cells originating in mesenchymal cells outside the bone marrow.
•    Lymphoma and leukemia: These two classes of cancer arise from hematopoietic (blood-forming) cells that leave the marrow and tend to mature in the lymph nodes and blood, respectively. Leukemia is the most common type of cancer in children accounting for about 30%•    Germ cell tumor: Cancers derived from pluripotent cells, most often presenting in the testicle or the ovary (seminoma and dysgerminoma, respectively).
•    Blastoma: Cancers derived from immature "precursor" cells or embryonic tissue. Blastomas are more common in children than in older adults.
Cancers are usually named using -carcinoma, -sarcoma or -blastoma as a suffix, with the Latin or Greek word for the organ or tissue of origin as the root. For example, cancers of the liver parenchyma arising from malignant epithelial cells is called hepatocarcinoma, while a malignancy arising from primitive liver precursor cells is called a hepatoblastoma, and a cancer arising from fat cells is called a liposarcoma. For some common cancers, the English organ name is used. For example, the most common type of breast cancer is called ductal carcinoma of the breast. Here, the adjective ductal refers to the appearance of the cancer under the microscope, which suggests that it has originated in the milk ducts.
Benign tumors (which are not cancers) are named using -oma as a suffix with the organ name as the root. For example, a benign tumor of smooth muscle cells is called a leiomyoma (the common name of this frequently occurring benign tumor in the uterus is fibroid). Confusingly, some types of cancer use the -noma suffix, examples including melanoma and seminoma.
Some types of cancer are named for the size and shape of the cells under a microscope, such as giant cell carcinoma, spindle cell carcinoma, and small-cell carcinoma. 
Cancer prevention
Cancer prevention is defined as active measures to decrease the risk of cancer. The vast majority of cancer cases are due to environmental risk factors, and many, but not all, of these environmental factors are controllable lifestyle choices. Thus, cancer is considered a largely preventable disease. Greater than 30% of cancer deaths could be prevented by avoiding risk factors including: tobacco, overweight / obesity, an insufficient diet, physical inactivity, alcohol, sexually transmitted infections, and air pollution. Not all environmental causes are controllable, such as naturally occurring background radiation, and other cases of cancer are caused through hereditary genetic disorders, and thus it is not possible to prevent all cases of cancer.
Diet and cancer

While many dietary recommendations have been proposed to reduce the risk of cancer, the evidence to support them is not definitive. The primary dietary factors that increase risk are obesity and alcohol consumption; with a diet low in fruits and vegetables and high in red meat being implicated but not confirmed. A 2014 meta-analysis did not find a relationship between fruits and vegetables and cancer. Consumption of coffee is associated with a reduced risk of liver cancer. Studies have linked excessive consumption of red or processed meat to an increased risk of breast cancer, colon cancer, and pancreatic cancer, a phenomenon that could be due to the presence of carcinogens in meats cooked at high temperatures. Dietary recommendations for cancer prevention typically include an emphasis on vegetables, fruit, whole grains, and fish, and an avoidance of processed and red meat (beef, pork, lamb), animal fats, and refined carbohydrates.
Vitamins have not been found to be effective at preventing cancer, although low blood levels of vitamin D are correlated with increased cancer risk. Whether this relationship is causal and vitamin D supplementation is protective is not determined. Beta-Carotene supplementation has been found to increase lung cancer rates in those who are high risk. Folic acid supplementation has not been found effective in preventing colon cancer and may increase colon polyps. It is unclear if selenium supplementation has an effect.
 Cancer screening

Unlike diagnosis efforts prompted by symptoms and medical signs, cancer screening involves efforts to detect cancer after it has formed, but before any noticeable symptoms appear. This may involve physical examination, blood or urine tests, or medical imaging.
Cancer screening is currently not possible for many types of cancers, and even when tests are available, they may not be recommended for everyone. Universal screening or mass screening involves screening everyone. Selective screening identifies people who are known to be at higher risk of developing cancer, such as people with a family history of cancer. Several factors are considered to determine whether the benefits of screening outweigh the risks and the costs of screening. These factors include:
•    Possible harms from the screening test: for example, X-ray images involve exposure to potentially harmful ionizing radiation.
•    The likelihood of the test correctly identifying cancer.
•    The likelihood of cancer being present: Screening is not normally useful for rare cancers.
•    Possible harms from follow-up procedures.
•    Whether suitable treatment is available.
•    Whether early detection improves treatment outcomes.
•    Whether the cancer will ever need treatment.
•    Whether the test is acceptable to the people: If a screening test is too burdensome (for example, being extremely painful), then people will refuse to participate.
•    Cost of the test.

Management
Many treatment options for cancer exist, with the primary ones including surgery, chemotherapy, radiation therapy, hormonal therapy, targeted therapy and palliative care. Which treatments are used depends on the type, location, and grade of the cancer as well as the person's health and wishes. The treatment intent may be curative or not curative.

Chemotherapy is the treatment of cancer with one or more cytotoxic anti-neoplastic drugs (chemotherapeutic agents) as part of a standardized regimen. The term encompasses any of a large variety of different anticancer drugs, which are divided into broad categories such as alkylating agents and antimetabolites. Traditional chemotherapeutic agents act by killing cells that divide rapidly, one of the main properties of most cancer cells.
Targeted therapy is a form of chemotherapy that targets specific molecular differences between cancer and normal cells. The first targeted therapies to be developed blocked the estrogen receptor molecule, inhibiting the growth of breast cancer. Another common example is the class of Bcr-Abl inhibitors, which are used to treat chronic myelogenous leukemia (CML). Currently, there are targeted therapies for breast cancer, multiple myeloma, lymphoma, prostate cancer, melanoma and other cancers.
The efficacy of chemotherapy depends on the type of cancer and the stage. In combination with surgery, chemotherapy has proven useful in a number of different cancer types including: breast cancer, colorectal cancer, pancreatic cancer, osteogenic sarcoma, testicular cancer, ovarian cancer, and certain lung cancers. The overall effectiveness ranges from being curative for some cancers, such as some leukemias, to being ineffective, such as in some brain tumors, to being needless in others, like most non-melanoma skin cancers. The effectiveness of chemotherapy is often limited by toxicity to other tissues in the body. Even when it is impossible for chemotherapy to provide a permanent cure, chemotherapy may be useful to reduce symptoms like pain or to reduce the size of an inoperable tumor in the hope that surgery will be possible in the future.

Radiation therapy involves the use of ionizing radiation in an attempt to either cure or improve the symptoms of cancer. It works by damaging the DNA of cancerous tissue leading to cellular death. To spare normal tissues (such as skin or organs, which radiation must pass through to treat the tumor), shaped radiation beams are aimed from several angles of exposure to intersect at the tumor, providing a much larger absorbed dose there than in the surrounding, healthy tissue. As with chemotherapy, different cancers respond differently to radiation therapy.
Radiation therapy is used in about half of all cases and the radiation can be from either internal sources in the form of brachytherapy or external radiation sources. The radiation is most commonly low energy x-rays for treating skin cancers while higher energy x-ray beams are used in the treatment of cancers within the body. Radiation is typically used in addition to surgery and or chemotherapy but for certain types of cancer, such as early head and neck cancer, may be used alone. For painful bone metastasis, it has been found to be effective in about 70% of people.

Surgery is the primary method of treatment of most isolated solid cancers and may play a role in palliation and prolongation of survival. It is typically an important part of making the definitive diagnosis and staging the tumor as biopsies are usually required. In localized cancer surgery typically attempts to remove the entire mass along with, in certain cases, the lymph nodes in the area. For some types of cancer this is all that is needed to eliminate the cancer.

Palliative care refers to treatment that attempts to make the person feel better and may or may not be combined with an attempt to treat the cancer. Palliative care includes action to reduce the physical, emotional, spiritual, and psycho-social distress experienced by people with cancer. Unlike treatment that is aimed at directly killing cancer cells, the primary goal of palliative care is to improve the person's quality of life.
People at all stages of cancer treatment should have some kind of palliative care to provide comfort. In some cases, medical specialty professional organizations recommend that people and physicians respond to cancer only with palliative care and not with cure-directed therapy. This includes:
1.    people with low performance status, corresponding with limited ability to care for themselves
2.    people who received no benefit from prior evidence-based treatments
3.    people who are not eligible to participate in any appropriate clinical trial
4.    people for whom the physician sees no strong evidence that treatment would be effective

Cancer Types
Choose from the list below to get information and resources for a specific cancer topic.
•    Adrenal Cancer
•    Anal Cancer
•    Bile Duct Cancer
•    Castleman Disease
•    Cervical Cancer
•    Colon/Rectum Cancer
•    Endometrial Cancer
•    Esophagus Cancer
•    Ewing Family Of Tumors
•    Eye Cancer
•    Gallbladder Cancer
•    Gastrointestinal Carcinoid Tumors
•    Gastrointestinal Stromal Tumor (GIST)
•    Gestational Trophoblastic Disease
•    Hodgkin Disease
•    Kaposi Sarcoma
•    Kidney Cancer
•    Laryngeal and Hypopharyngeal Cancer
•    Leukemia
•    Liver Cancer
•    Lung Cancer
•    Lung Cancer - Non-Small Cell
•    Lung Cancer - Small Cell
•    Lung Carcinoid Tumor
•    Lymphoma
• •    Non-Hodgkin Lymphoma
•    Non-Hodgkin Lymphoma In Children
•    Oral Cavity and Oropharyngeal Cancer
•    Osteosarcoma
•    Ovarian Cancer
•    Pancreatic Cancer
•    Penile Cancer
•    Pituitary Tumors
•    Prostate Cancer
•   Salivary Gland Cancer
•    Sarcoma - Adult Soft Tissue Cancer
•    Skin Cancer
•    Skin Cancer - Basal and Squamous Cell
•    Skin Cancer - Melanoma
•    Skin Cancer - Merkel Cell
•    Small Intestine Cancer
•    Stomach Cancer
•    Testicular Cancer
•    Thymus Cancer
•    Thyroid Cancer
•    Uterine Sarcoma
•    Vaginal Cancer

What Causes Cancer?
•    Cancer is a complex group of diseases with many possible causes. In this section you can learn more about the known causes of cancer, including genetic factors; lifestyle factors such as tobacco use, diet, and physical activity; certain types of infections; and environmental exposures to different types of chemicals and radiation.
    Genetics and Cancer
•    Some types of cancer run in certain families, but most cancers are not clearly linked to the genes we inherit from our parents. In this section you can learn more about the complex links between genes and cancer, as well as genetic testing and how it is used.

•    Tobacco and Cancer
•    In this section you can get information on cigarette, cigar, and smokeless tobacco use, and learn how it affects different groups of people.

•    Diet and Physical Activity
•    Get the facts on how diet, physical activity, excess body weight, and alcohol use may affect your risk of cancer.

•    Sun and UV Exposure
•    In this section you can learn more about the link between too much sun exposure and cancer.

•    Radiation Exposure and Cancer Risk
•    Learn about the different types of radiation exposure and how it might affect cancer risk.

•    Other Carcinogens
•    Learn about some of the environmental causes of cancer that may lurk in our homes, at work, in pollution, and even in some medical tests and treatments. You can also learn how some types of infections are linked to cancer.

No comments:

Post a Comment